The tadpoles of the brown frogs Rana［graeca］graeca and Rana［graeca］italica（Amphibia，Anura）

Britta Grillitsch＊，Heinz Grillitsch＊＊， Alain Dubois＊＊＊\＆Heinz Splechtna＊＊＊＊
＊Institute of Laboratory Animal Science，University of Veterinary Medicine， Linke Bahngasse 11， 1030 Vienna，Austria
＊＊Naturhistorisches Museum Wien，Burgring 7， 1014 Vienna，Austria
＊＊＊Laboratoire des Reptiles et Amphibiens，Muséum national d＇Histoire naturelle， 25 rue Cuvier， 75005 Paris，France
＊＊＊＊Institute of Zoology，University of Vienna，Althanstraße 14， 1090 Vienna，Austria

Abstract

External morphology and buccopharyngeal characters of the tadpoles of Rana［graecal graeca and Rana［graeca］isalica are described in detail．Both characterize the larvae as well adapted to flowing waters．The most distinctive oral and buccal features are the increased number of tooth rows，the high number of papillae in both buccal floor and buccal roof arena，and the large prelingual palps with elongate lobes．

Larvae from Italy resemble those from Greece，However，samples from both countries differ slightly but significantly in a variety of feakures．This supports the existence of two taxons，subspecies or species，graeca for the populations of the Balkans and italica for those of the Apennines．

Introduction
Bibliotheque Centrale Mueéum

Rana graeca Boulenger， 1891 （Greek frog，stream frog）is the only European anuran which was first recognized by its larva．The story of the tadpoles＇discovery by the French batrachologist Louis－François Héron－Royer is reported by Boulenger（189la）and confirmed by a letter from Héron－Royer to Raymond Rollinat，dated 27 September 1891 （library，Laboratoire des Reptiles et Amphibiens，Muséum national d＇Histoire naturelle，Paris），where he writes：＂Je viens de recevoir une lettre de Boulenger qui
m'annonce une nouvelle grenouille pour la faune Européenne, sur un têtard de Grèce que je lui ai déterminé n'étant ni R. fusca ni R. Latastei. Il vient d'en faire une Rana graëca."

Geographical disjunction (map in Arnold \& Burton, 1978) and morphometric divergences between adult specimens from the Balkans and from the Apennines gave rise to discussions on intraspecific variation (Arnold \& Burton, 1978) and taxonomic status (LanZA, 1983). The establishment by DuboIs (1987)' of two subspecies, R. graeca graeca (Balkans) and R. graeca italica (Apennines), was based on external morphometric differences in adults, whereas the suggested raising of italica to specific rank (Picariello et al., 1990; Capula, 1991) resulted from allozyme studies.

Literature on larval morphology of R. graeca is scarce. Oral disks are depicted in Boulenger (1891b) and GŪnther (1985), well developed larvae in Boulenger (1891b) and Beskov (1970). The former additionally provided a short description and differential diagnosis and the latter contributed to the knowledge of the tadpole's biology. Both authors refer to a small number of Balkan specimens only. No further morphological investigations are available and there are no comparative data on tadpoles from Italy.

The primary goal of the present paper is to describe the external and buccopharyngeal characters of graeca and flalica larvae in the process of development. This is done for a variety of features (also for those where no significant differences between tadpoles from the Balkans and the Apernines were found), to make data available for comparison with other South European brown frog species.

Material and methods

Specimens from five Greek and seven Italian localities were investigated (Table I). Number of specimens is 212 for detailed morphometric analysis, 364 for size-stage diagram (fig. 4), and 282 for tooth rows counts. Description of buccopharyngeal structures refers to five tadpoles each (stages 36-38) from both Italy and Greece (asterisks in Table I) and is based on stereomicroscopy $(\mathrm{n}=6)$ and scanning electron microscopy $(\mathrm{n}=4)$.

External morphology is described using established parameters introduced by Boulenger (1897-1898), and defined in more detail by Grillitsch (1984) and Grillitsch et al. (1989). The measurements do not represent true distances but projections to the tadpole's frontal and sagittal planes respectively (Table II). Distances between pupillae or nostrils mean distances between the centres of these organs. Tooth rows of both upper and lower lip are numbered from the margin towards the centre of the oral disk, as is done in the classic terminology of Boulenger (1891b). The length of a tooth row is defined as the straight distance between its ends in the expanded oral disk. For tooth rows formula (number of upper rows / number of lower rows), rows are counted as one whether continuous or interrupted, uni- or bilateral.

[^0]Table I. - Material investigated. MNHN: Muséum national d'Histoire naturelle, Paris; NMW: Naturhistorisches Museum Wien; *: samples used for buccopharyngeal analysis; habitat: B, brook; T, torrent; R, river; P, pond; morphometry: specimens used for detailed morphometric analysis (Table III); size-stage graph: specimens used in size-stage graph (fig. 4); tooth rows counts: specimens used in tooth rows counts; n : number of specimens; RS: range of GosNer's (1960) stages of specimens.

Specimans series	Country and region	Locality	Habitat	Date	Morphometry u (RS)	Sizo-stage graph n (RS)	Tooth row's counts $\mathrm{n} \text { (RS) }$
MNHN 1985.1777-1815	Greace, Peloponnissos, Ahaia	Kato Viassia (760.770 m)	T	13.08 .82	34 (28-39)	36 (28-40)	34 (28-40)
NMW 29181:1-20	Greece. Peloponnissos, Ahaia	Krachis potamos near Zivlos (550 m)	B	06-10.08.84	12 (31-39)	15 (31-43)	14 (31-41)
MNHN 2985.1817-2024*	Greece, Peloponnissos, Arkadia	Kalomeri (980 m)	T	14.08 .82	66 (29-39)	182 (29-45)	117 (29-41)
NMW 27637:1-20	Greece, Peloponnissos, Hia	Orco Minthi near Nea Figalia (750 m)	B	16.08 .83	15 (27-39)	26 (27-41)	24 (27-41)
NMW 29180:1-20	Oreoce, Peloponnissos, Koriattis	Olvios potamos neay Feneos (800 m)	B	06-10.08.84	10 (28-39)	10 (28-45)	10 (28-41)
MNHN 1985.1756-1775	Italy. Abruzzo. Teramo	Fiume Salinello (1040 m)	T	03.08 .85	3 (34-39)	20 (34-44)	12 (34-41)
MNHN 1985.1719	Italy, Basilicata, Potenza	Fontuna d'Eboli (1010 m)	\#	02.08 .82	1 (30)	1 (30)	1 (30)
MNHN 1985.1720	Jualy, Basilicala, Potenza	Pecorone (800 m)	T	02.08.82	1 (37)	1 (37)	1 (37)
MNHN 1985.1504-1560 *	Italy, Calabris, Cosenze	Cosention (1140 m)	T	22-23.07.82	57 (28-39)	57 (28-39)	55 (28-39)
MNHN 1985.1564-1674	[taly, Calabria, Cosenza	Fiume Savuto (1070 m)	$\mathrm{R}+\mathrm{P}$	24.07 .82	1 (37)	1 (37)	-
MNHN 1985.1678-1691	[taly, Lazio, Frasizone	Vallegrande ($530-570 \mathrm{~m}$)	T	01.08.82	12 (37-39)	14 (37-40)	14 (37-40)
MNHN 1985.1776	ttaly, Marche, Ascoli Piceno	Trisungo (630 mi)	B	09.08 .85	-	1 (42)	-

Table II. - Definition of distances measured, including explanation of abbreviations used. P: projection to frontal (F) or sagittal (S) plane.

Abbreviation	Definition	P
HT	Maximum height of tail (including upper and lower tail fin)	S
IMP	Number of inframarginal oral papillae	
LF	Maximum height of lower (ventral) tail fin	S
LTR1	Length of first (outermost) tooth row of lower lip	
LTR2	Length of second tooth row of lower lip	
MP	Number of marginal oral papillae	
NN	Internarial distance	F
NP	Naro-pupillar distance	F
OD	Maximum width of oral disk	F
PP	Interpupillar distance	F
RN	Rostro-narial distance	F
SS	Distance: tip of snout - opening of spiracle	S
SU	Distance: tip of snout - insertion of dorsal tail fin	S
SV	Distance: tip of snout - vent (snout-vent length)	S
TL	Distance: tip of snout - tip of tail (total length)	S
UF	Maximum height of upper (dorsal) tail fin	S
UTR1	Length of first (outermost) tooth row of upper lip	
UTR21	Length of median gap between portions of second tooth row of upper lip	F
UTR2P	Length of one portion of second tooth row of upper lip	F
vs	Distance: vent - opening of spiracle	S
VT	Distance: vent - tip of tail (length of tail)	S

Nomenclature of buccopharyngeal structures is largely in accordance with Wassersug (1976, 1980); definition of developmental stages follows Gosner (1960).

Tadpoles examined comprise developmental stages 27 through 45; detailed morphometric analysis was restricted to stages $28-39$. Since body proportions change during growth, morphometric data have to be accompanied by the size or developmental stage they refer to. In the present paper the assignment to size classes was preferred because of statistical reasons. Since there is a fair positive linear correlation between size and developmental stages 27 through 39 (fig. 4), they are easily convertible.

Measurements were done optically with a digital display length-measuring unit (Wild MMS 235). Preparation for SEM examination (Jeol JSM-35 CF) comprised dehydration (ethanol), critical-point-drying (acetone, liquid carbondioxide), and gold sputter surfacecoating.

Statistical analyses were processed using SPSS-X and SAS. Significances (α) were calculated by means of Student t test and Mann-Whitney U test. Selection rule for discriminant analysis (fig. 10) with stepwise variable selection was: maximize minimum Mahalanobis distance. For both the pooled Greek and the pooled Italian samples, homogeneity was proved by Kruskal-Wallis ANOVA for each measurement within each of the six size classes, where sufficient material was available. For references concerning Haldane's coefficient of variation (Table III), see Delaugerre \& Dubois (1985).

Results
General appearance, colour and pattern (preserved spectmens) (figs. I-3)

In Greek and Italian tadpoles, the slightly depressed ovoid body continuously extends into the robust, fairly elongate tail which lacks a marked constriction at its base. Both dorsal and ventral caudal fins are low and slightly convex with almost parallel edges. The height of the trunk is not or not clearly exceeded by that of the tail fin which is more or less tapering but never acutely pointed and sometimes even obtuse. As is typical of tadpoles of the subgenus Rana, the spiracular tube is sinistral and directed backwards and slightly upwards. It opens about halfway between tip of snout and vent, more frequently a little closer to the anterior than to the posterior end of the trunk, especially in advanced developmental stages. The vent opens subdextral, close to the edge of the ventral fin. The eyes are moderately sized, close to one another, not visible from below.

The trunk is dark greyish-brown above due to a close speckling with black. The ventral parts and the muscular portion of the tail are much lighter, the latter speckled with black. Caudal fins are greyish, transparent, with small dark spots or arborescent markings, mainly in the dorsal portion. There are neither distinct changes in colour or pattern during larval development, nor are there differences between Greek and Italian specimens.

Size and proportions of trunk and tall (table III)
The tadpoles on which this study is based were all collected in the months of July and August (Table I), i.e. several months after the breeding period, which occurs in February to April in Italy (Bagnoli, 1985; Picariello et al., 1993) as well as in the Balkans (Beskov. 1970. Nöllert \& Nöllert, 1992). Total lengths (TL) of the smallest tadpoles examined were 20.2 mm (Italy, stage 28) and 21.5 mm (Greece, stage 28). So we cannot contribute to the size of hatchlings which is $9.1-9.5 \mathrm{~mm}$ for Bulgarian specimens (Beskov, 1970). Maximum TL were 48.5 mm (Italy, stage 41) and 58.2 mm (Greece, stage 41), exceeding the maxima compiled from literature (45 mm , Günther, $1985,46.3 \mathrm{~mm}$,

1

2

3

Figs. 1-3. - Stage 38 graeca tadpole from Krathis potamos, Greece (NMW 29181): (1) lateral view; (2) dorsal view; (3) ventral view.

Beskov, 1970; 48 mm , BOULENGER, $1891 \mathrm{a}-\mathrm{b} ; 50 \mathrm{~mm}$, BaGNOL1, 1985). As in adults, the average TL of Greek larvae clearly surpasses that of Italian ones (fig. 4), what is significant ($\alpha \leq 0.05$) in stages $29,31,35,36,39,40,41$.

Mean values of VT/SV varied with TL increasing from 0.78 to 1.53 in Italian, and from 0.92 to 1.45 in Greek larvae, exceeding 0.6 calculated from Boulenger's (1891a) table. In size classes TL $30.0-49.99 \mathrm{~mm}$, Italian tadpoles have longer tails than Greek ones ($\alpha \leq 0.05$).

The dorsal tail fin barely reaches the trunk. In Italian tadpoles, the dorsal fin generally extends a little more towards the trunk, whereas in Greek specimens it is restricted to the tail region. This difference in ratio $\mathrm{SV} / \mathrm{SU}$ is significant ($\alpha \leq 0.01$) in size classes TL $35.0-44.99 \mathrm{~mm}$.

Older (longer) larvae have relatively lower tail fins. The means of VT/HT vary from 1.46 (young larvae) to 2.88 (advanced stages) in Italian tadpoles, and from 2.26 to 3.81 in Greek specimens, respectively, indicating conspicuously higher fins in Italian larvae. These differences are significant ($\alpha \leq 0.05$) in specimens longer than TL 25.0 mm .

Fig. 4. - Size-stage graph, showing correlation of size (TL) and developmental stage in ftalica and graeca tadpoles, including mean value, range, standard deviation and sample size.

On the average, in Italian individuals the heights of dorsal and ventral tail fins are almost the same (UF/LF around 1.0). In Greek tadpoles, the dorsal fin is usually higher than the ventral one (means of UF/LF 1.11-1.34). Differences are significant ($\alpha \leq 0.01$) in animals longer than TL 30 mm .

Ratios HT/UF and SS/VS reveal no significant differences between Italian and Greek tadpoles.

Position of eyes and nares, width of oral disk
The mares are positioned closer to the tip of the snout than to the eyes. Mean values of RN/NP are a little higher in Greek than in Italian larvae, meaning the nares of the Italian being closer to the tip of the snout ($\alpha \leq 0.1$ in size classes TL $30.0-34.99 \mathrm{~mm}$ and TL $40.0-49.99 \mathrm{~mm}$). Ratio PP/NN is not significantly different between Italian and Greek larvae.

Fig. 5. - Oral disk of a graeca tadpole (stage 38) from Krathis potamos, Greece (NMW 29181), stage 38.

Boulenger ($1891 \mathrm{a}-\mathrm{b}$) mentions that R. graeca tadpoles differ from their European "congeners in having the mouth quite as wide as the interorbital space". Mean values of PP/OD vary from 1.05 to 1.18 . Greek tadpoles show a comparatively wider oral disk (α ≤ 0.05) in size classes TL $>40 \mathrm{~mm}$.

Oral disk (figs. 1, 3, 5, 6)

The oral disk is in ventral subterminal position. It is expanded laterally and of ovoid or rectangular shape. Marginal peribuccal papillae (MP) are restricted to the lateral corners and the posterior margin of the oral disk, and are basically arranged in a single row at a density of $9-10$ per millimetre on the posterior margin. In the lateral corners, besides solitary inframarginal papillae (IMP), two papillate ridges are descending towards the beak on each side (figs. 5, 6).

Table III. - Descriptive statistics of selected parameters describing graeca (G) and italica (I) larvae. Size classes are according to the value of TL (mm), n; number of specimens; min: minimum value; med: median value: $\overline{\mathrm{x}}$ ' mean value; max: maximum value; Sx : standard error of the mean, Sd: standard deviation; $\mathrm{V}_{\mathrm{H}:}$ Haldane's coefficient of variation. For further abbreviations see Table il.

Size class	20.0-24.99		250-2999		300-3499		$350-3999$		40.0.44.99		450.4999		$\begin{aligned} & 50 \\ & 549 \end{aligned}$	$\begin{gathered} 55 . \\ 559 \end{gathered}$
Samples	t	G	I	G	I	G	1	G	I	0	1	G	G	G
Stage														
n	6	2	19	12	15	16	14	34	12	23	8	38	11	2
mun	28	28	28	27	30	27	33	27	37	31	37	35	38	37
mod	29	30	30	29/30	34	35/36	36/37	36	37	37	38	39	39	38
max	31	32	35	33	37	37	39	39	39	39	39	39	39	39
TL														
n	6	2	19	12	15	16	14	34	12	23	8	38	11	2
mın	2020	2150	2510	2610	30.30	30.00	3510	3500	4080	40.20	4520	4510	5020	5540
K	22.43	2210	2734	2858	32.56	32.31	3725	3725	4291	42.81	46.78	48.07	5156	5560
max	24.20	2270	2980	2960	34.50	3450	3910	3980	4430	4490	4790	4990	5460	5580
\$x	0.73		034	0.28	031	038	039	026	039	032	036	022	042	
Sd	178		149	0.96	121	150	145	150	133	153	101	136	139	
V_{FI}	8.3		55	35	3.8	4.7	40	41	32	36	22	2.9	28	
SV														
n	6	2	19	12	15	16	14	34	12	23	8	38	11	2
mur	1140	1070	1140	12.00	13.70	1340	1470	1530	16.60	1740	1700	1830	2020	2240
\times	1273	1160	1334	1423	15.00	15.76	16.22	1692	1810	1924	1849	2020	2126	2275
max	1480	1250	15.20	1940	1600	1890	1780	1960	1930	20.60	1940	2240	2330	2310
Sx	0.96		024	051	017	033	0.24	0.18	025	020	034	019	027	
Sd	138		104	178	067	130	090	106	087	095	095	117	0.91	
V_{11}	113		79	128	4.5	84	57	63	4.9	50	53	58	44	
VTISY														
n	6	2	19	12	15	16	14	34	12	23	8	38	11	2
min	051	0.82	669	0.48	097	0.41	116	088	115	1.09	143	109	122	140
$\overline{\mathrm{x}}$	078	0.92	106	103	117	100	130	121	138	123	153	139	143	145
max	110	101	142	136	141	138	151	144	168	143	171	164	158	149
Sx	009		005	0.06	003	007	003	002	004	002	004	0.02	003	
\$d	0.21		020	021	011	027	012	011	014	011	011	0.15	010	
$\mathrm{V}_{\text {II }}$	2540		1820	1980	960	2640	940	920	10.40	900	670	10%	6.40	
Sv/SU														
n	6	2	18	11	14	16	14	34	12	23	8	33	10	2
min	113	099	105	101	085	0.99	098	0.97	108	105	100	0.91	104	106
\hat{x}	125	106	124	118	123	118	121	112	126	116	116	116	112	121
max	150	113	I 51	134	138	154	144	128	145	128	135	145	124	135
Sx	005		063	0.04	004	003	003	001	003	001	004	0.02	0.02	
Sd	013		014	0.12	B14	0.14	013	007	011	0.07	016	010	006	
V_{11}	10.00		1060	940	1080	1120	1010	630	810	520	800	780	460	

SSNS														
n	6	2	18	11	14	16	14	34	12	23	8	33	10	2
thin	079	099	080	080	677	079	079	0.72	075	073	075	0.70	0.63	0.76
x	0.96	100	093	095	0.92	090	091	0.90	092	086	091	0.91	0.89	0.82
mak	105	101	128	134	105	100	112	124	101	105	108	117	104	088
Sx	005		0.03	004	002	002	0.03	0.02	0.02	0.02	004	002	0.04	
Sd	0.15		010	014	008	006	010	0.11	008	009	012	0.09	0.12	
V_{11}	10.90		1090	1400	890	680	1120	1230	890	10.60	1360	1000	1270	
VT/HI														
n	6	2	18	11	14	16	14	34	12	23	8	33	10	2
mun	0.97	178	130	128	166	100	210	188	227	288	2.25	290	351	297
\%	146	226	209	244	2.24	247	252	322	255	335	2.88	354	381	331
max	189	273	283	331	278	358	339	391	299	392	319	4.23	426	364
Sx	015		011	0.15	007	017	010	008	007	0.07	0.11	006	0.08	
Sd	036		047	0.49	0.25	069	036	0.48	023	034	030	0.34	0.26	
V_{tI}	2350		2180	1940	10.10	2710	1410	14.70	880	1000	1000	9.40	6.70	
HTMF														
n	6	2	17	11	14	15	13	34	12	23	8	33	10	2
mun	303	309	290	2.98	291	266	276	274	2.69	299	2.84	295	292	361
$\overline{\mathrm{x}}$	332	351	347	349	334	327	331	347	338	358	320	3.55	362	362
max	392	392	4.72	3.96	374	453	374	479	409	4.64	3.71	480	488	362
\$x	013		012	010	007	011	008	008	012	0.08	0.11	0.07	020	
Sd	0.31		0.51	0.32	0.26	0.46	030	047	0.41	0.40	0.31	039	064	
V_{H}	880		1460	880	760	1370	890	1340	1210	1100	930	10.80	1730	
UFAF														
n	6	2	17	11	14	16	13	33	12	23	8	33.	10	2
mun	079	116	062	082	083	078	090	083	082	088	0.01	001	$0 \% 0$	109
x	0.98	134	0.97	111	100	125	110	126	103	124	099	126	134	110
max	110	152	134	132	123	163	158	173	126	100	123	173	183	111
Sx	005		004	0.05	003	0.06	0.06	004	0.04	0.04	014	005	008	
Sd	011		018	0.17	012	0.23	020	021	013	020	0.40	031	026	
VH	1060		1900	1490	1120	18.70	2110	16.80	1190	1550	740	1560	1840	
PPNN														
n	6	2	18	11	14	14	14	33	12	23	8	33	10	2
min	143	149	122	129	133	133	134	135	146	147	152	146	161	166
\bar{x}	150	150	141	145	150	153	164	158	160	158	166	167	174	167
max	169	151	168	155	169	174	212	210	179	172	181	195	185	168
Sx	004		002	003	003	002	007	003	003	001	0.04	002	002	
\$d	0.10		0.10	0.08	0.11	0.11	0.28	019	0.10	0.07	0.11	0.13	008	
V_{H}	630		650	570	680	730	16.80	1210	580	380	6.20	720	410	
RN/NP														
n	6	2	18	11	14	16	14	34	12	23	8	33	10	2
min	0.49	064	045	0.48	0.50	00^{5}	0.47	0.46	037	045	0.46	047	042	058
\times	066	065	059	063	061	0.69	0.67	068	0.57	0.65	055	063	061	039
max	088	0.65	075	086	081	087	094	085	072	081	070	0.93	068	060
Sx	0.06		002	0.03	002	002	004	002	003	002	0.03	002	003	
Sd	0.14		0 OB	0.11	0.09	0.10	0.14	0.09	011	010	0.08	010	0.08	
V_{11}	20.50		1200	1620	1330	1320	1980	1330	1790	1560	1310	1440	1340	

PPHOD														
n	6	2	17	11	14	16	14	33	12	23	8	33	10	1
mal	101	105	0.95	086	091	085	095	088	112	090	121	0.98	101	116
\dot{x}	112	114	108	105	113	114	115	118	126	118	134	111	115	
max	124	123	120	121	130	140	132	136	145	140	145	126	126	116
Sx	004		0.02	003	003	0.04	0.03	0.02	003	0.03	0.03	002	002	
Sd	010		008	011	011	014	0.12	0.12	010	0.15	010	0.08	007	
V_{H}	840		6.60	1070	990	1160	970	1030	810	12.00	690	730	620	
NN/OD														
-	6	2	17	11	14	14	14	34	12	23	8	33	10	1
mu	068	070	068	0.62	0.63	061	046	0.51	072	0.56	0.71	0.54	0.60	069
x	0.75	0.76	078	0.73	0.76	075	0.72	0.76	0.79	0.75	081	0.67	0.66	
max	083	082	0.89	082	087	087	084	092	084	090	089	080	073	0.69
Sx	002		0.01	0.02	002	0.02	0.03	002	0.01	0.02	0.02	0.01	001	
Sd	006		005	0.07	008	0.08	0.12	0.10	0.04	0.10	006	0.07	004	
V_{HI}	700		6.50	9.80	1070	950	1560	1330	520	1210	760	900	4.70	
UTR $2 \mathrm{P} / \mathrm{UTR}^{2 I}$														
min	350	418	2.07	312	2.24	220	362	2.64	476	2.95	5.48	100	388	469
$\overline{\mathrm{x}}$	516	4.43	6.87	6.36	905	6.05	6.22	719	815	8.25	1189	890	10.69	770
max	770	468	26.40	1059	2257	12.67	10.36	3733	1345	22.33	20.00	5100	4625	1070
Sx	0.69		146	0.89	183	091	0.61	110	102	106	244	162	446	
Sd	168		6.02	281	6.58	363	2.21	6.39	287	4.95	599	915	1339	
V_{H}	339		88.9	453	74.1	609	362	895	363	607	525	1036	128.7	
LTR2/LTR1														
min	103	109	087	0.83	0.68	100	0.65	083	102	061	105	086	101	108
$\overline{\mathrm{x}}$	110	117	110	111	107	112	107	112	108	111	112	112	111	122
max	115	125	125	134	130	122	138	127	116	141	122	150	127	136
Sx	0.02		002	005	004	0.02	005	002	0.01	003	0.02	002	003	
Sd	0.05		0.08	014	0.14	006	0.20	009	0.05	015	0.06	011	0.09	
V_{dt}	380		740	1300	1240	540	1810	810	470	1280	550	900	830	
IMP														
n	6	2	17	11	13	16	14	32	12	23	8	33	10	2
mun	10	1	6	2	9	1	7	3	5	1	5	1	2	7
x	1400	300	1553	6.82	16.31	975	14.71	788	1317	6.74	1375	609	630	800
max	22	9	36	12	23	16	21	17	24	11	27	15	15	9
Sx	170		174	0.87	118	096	0.98	0.58	175	054	247	059	118	
Sd	4.16		719	2.89	427	383	367	326	6.05	2.61	6.98	339	375	
med	13	5	14	7	18	10	$18 / 16$	7	11/12	7	13	5	$5 / 6$	8
V_{H}	3100		4700	4330	2670	3990	2540	4170	46.90	3910	5240	5610	5870	
MP														
n	6	2	17	11	13	16	14	32	12	23	8	33	10	2
man	59	43	55	51	64	57	53	57	66	60	65	67	80	61
\times	6683	5400					8043			76.26	80.75	9197	93.20	7550
max	75	65	99	84	92	87	100	95	89	99	102	114	118	90
Sx	230		2.60	261	239	172	324	134	229	226	437	215	424	
Sd	564		10.72	864	862	686	1213	810	795	1082	12.37	1236	1364	
med	66167	34	74	69	84	72/73	79,80	72	81	75	79/80	92	88	75/76
V_{11}	880		1470	1280	1100	980	1540	1140	1030	1430	1580	1350	15 10	

Fig. 6. SEM micrograph of left corner of the oral disk of a groeca tadpole (stage 38) from Krathis potamos, Greece (NMW 29181)

Through all size classes up to TL $\leq 55 \mathrm{~mm}$, mean numbers of MP increase constantly from 54 to 93 in Greek, and from 67 to 81 in Italian larvae. There are always significant differences ($\alpha \leq 0.1$) between Italian and Greek specimens. However, in size classes TL $<$ 45 mm . Italan larvae have more papillae than Greek ones, while in longer larvae the contrary is observed (Table III).

Inframarginal papillae (IMP) are frequently found in the corners of the mouth or solitary inside the marginal papillae. Their number is significantly ($\alpha \leq 0.01$) higher in Itahan than in Greek tadpoles of $T \mathrm{~L} \geq 30 \mathrm{~mm}$ (Table III).

In tadpoles at stages 27 through 41, there are usually 4-5 rows of keratodonts (tooth rows) in the anterior and 4 in the posterior lip. Keratodonts are disposed in single series on each ridge. In all tooth rows of tadpoles at stages $36-38$, density of keratodonts is 7-8 per $100 \mu \mathrm{~m}$; they are $70-80 \mu \mathrm{~m}$ long and their apical portions are spatulate with [2-14 acute marginal denticles each (fig. 7).

Fig. 7 SEM micrograph of keratodonts of a graeca tadpole (stage 38) from Krathis potamos, Greece (NMW 29181)

The outermost upper row (UTR1) and the outer three lower rows (LTR1-3) are contunuous and almost equal in length. The innermost lower row (LTR4) reveals a short median gap without exception in our specimens; however, according to Boulenger (1891a-b), it may also be continuous. Width of median gap is wide in UTR3-5, and moderate to short in UTR2 (Table III). Ratios LTR2/LTR1 and UTR2P/UTR2I in Italian and Greek larvae do not differ significantly.

Both lateral extension of upper tooth rows and length of their left and right portion decrease in centripetal direction; the portions of the innermost extremely short row (UTR5) bear a few keratodonts only, and may be unlateral or even absent. Absence is more frequent in, but not restricted to, early developmental stages.

In both Italian and Greek tadpoles, the total number of tooth rows slightly increases during development. Two tooth row formulae were found frequently: $4 / 4$ (in 30 specrmens of itaftica and 29 of graeca) and $5 / 4$ (נn 53 and 164 specimens, respectively). Two much rarer formulae were observed exclusively in graeca: one specimen (stage 39) unilaterally showed a distinct innermost UTR6 (formula 6/4); in five specimens (stages $29,33,39,40$,

Fig 8 - Buccal floor of a graeca tadpole (stage 38) from Nea Figalia, Greece (NMW 27637).
41), a short outermost, fifth LTR, one fourth to one tenth of the length of LTR1, was present in a median position (formula $5 / 5$).

The faw sheaths (beak) are robust with dark pigmentation, the upper cutting edge is gently " M "-shaped, the lower one " \mathbf{U} "-shaped; there are about 5 serrations ($45-50 \mu \mathrm{~m}$ high) per $100 \mu \mathrm{~m}$ in both sheaths of tadpoles of stages $36-38$.

Fig. 9. - Buccal toof of a graeca tadpole (stage 38) from Nea Figaha, Greece (NMW 27637).

Buccopharyngeal cavity

In the buccal floor (fig. 8), two pairs of stout, jointed ventral infrarostral pustulations form a semicircular arch within the median third of the prelingual area The pair of prelingual palps is large, with three slender, elongate, finely-limbed, and secondanly papillate lobes, long enough to reach out of the mouth.

Two slim cylindric lingual papilae rise in the posterior half of the distinct tongue anlage.

The buccal floor arena is scattered regularly with about 100 conical, elongate papillae, which are almost as long as the lingual papillae; there are few small pustulations in between. Prepocket papillae can be even larger and furcated or palp-like.

The margin of the velar apparatus describes a smooth, broad arch with three pars of conical marginal projections corresponding to the filter cavities; the median portion of the velum is smooth-edged showing two further papilla-like projections on each side of the quite undistinct median notch. The glandular zone is broad, not markedly thickened, with distinct secretory pits, glottis and laryngeal disk are not exposed.

In the buccal roof (fig. 9), the prenanal area shows three pars of tuberous papillae, arranged in a semicircular arch; the most anterior pair is polydactylous. The main axis of the internal nares is almost in a right angle to the main body axis. In the centre of the anterior narial walls a slender, papillate flap is rising on each side: medially, the wall is lined with a few minor pustulations. The posterior walls of the nares are smooth-edged valves with a slight lobe towards the midline on each side. There is a single parr of slender, elongate postnarial papillae, with a line of pustulations on the anterior margin, and only one pair of small, cylindric lateral ridge papillae with two or three termmal pustulations which may be accompanied by two tiny pustules each. The median ridge is forming an almost 1 sogonic triangular flap; its lateral margins are bordered by three or four pustulations.

The high number of about 70 buccal roof arena papillae corresponds to that in the buccal floor, but the dorsal ones are markedly shorter. The dorsal velum is well developed, showing a broad zone with distinct secretory pits.

No obvious differences were found between Italian and Greek tadpoles.

DISCUSSION AND CONCLUSIONS

MORPHOLOGICAL ADAPTATIONS TO LIFE IN FLOWING WATERS

Most of the tadpoles of graeca and stalica on which this study is based were collected in flowing waters. small brooks, torrents of vanous sizes or larger rivers (Table I). Only one serses of talica was collected in part in a river (Fiume Savuto) and in part in a pond in the bed of this river and close to the flowing river itself: probably the eggs were land there before the pond was isolated from the river by the lowering of its level.

The larvae of graeca and ualca are inghly adapted to flowing waters by both external and buccopharyngeal characters. These comprise the slightly depressed body, the relatively long tall with low dorsal and ventral caudal fin, the former barely reaching the trunk, as well as the subterminal oral disk with the highest number of tooth rows among European ranine larvae.

In the lateral corners of the oral disk, besides the solitary inframarginal papillae, two papillate ridges are descending towards the basis of the beak on each side (figs. 5-6). In
this region, folds and additional papllae are often seen in anuran larvae, but distinct pairs of ridges have not been reported before; they might support the suctonal function of the oral disk in separating upper and lower "lips", and thus, possibly enable maintainance of low-pressure in the posterior portion while the anterior part may be loose. Though the importance of oral disk suction in flowing waters is evident, too little is known on mechames of the peribuccal structures in feeding and adhesion for clear functional interpretation.

The pair of prelingual palps, long enough to reach out of the mouth, is a feature of the stream-adapted, bottom-feeding type as characterized by Wassersug (1980).

The number of buccal floor papillae (about 100) is at least twice that of R. temporaria given by Viertel (1982). In European ranine frogs, usually 40 to 60 papillae are found in this area, the lateral ones tending to be more elongate, the median ones often being low pustules. In general, these papillae are more numerous and elongate in stream-adapted larvae feeding on a self-generated suspension, and are serving as a coarse pre-filter (Wassersug, 1980). This also has been noted by Gradwell (1972) for tadpoles of Rana fuscigula which live in "quiet pools in cool mountain streams".

The farvae of graeca and italica belong to the few lotic European tadpoles which also include the larva of the Majorcan midwife toad, Alytes muletensis (Viertel, 1984), the tadpoles of R. iberica and R. pyrenaica (Serra-Cobo, 1993), and possibly at least of some populations currently referred to R. temporaria and to the R. macrocnemas complex.

As concerns the ecomorphological guilds of exotrophic anuran larvae (Altio \& Johnston, 1989), graeca and italica bave to be assigned to the lotic, rheophilous type, moderately expressing the characters of the "clasping" subtype

Comparison with other European frogs of the genus Rana

In four European brown frog species there is a tendency towards irregular development of the outermost lower tooth row and the innermost upper tooth row, concerning UTRS in graeca and taluca (present paper), UTR4 in R. t. temporaria, and UTR3 in R. dalmatina and R. arvalis wolterstorff (Grilutsch \& Grileitsch, 1989). Although early posthatching stages are not on hand, graeca and italtca seem to fit into the general pattern of tooth rows development within the European brown frogs, which means: rows of keratodonts being additional to the basic formula of $2 / 3$ show retarded ontogenetic appearance, are added centripetally in the upper, centrifugally in the lower lip, and reveal the more susceptibility to alterations the later they occur (Grillitsch \& Grillitsch, 1989). Both retarded ontogenetic appearance and irregular formation suggest these additional tooth rows to be of young phylogenetic age

For differential diagnosis to sympatric R temporaria, R. dalmatina and green frogs Larvae, the tooth rows formulae of graeca and italica (4-5/4 in italica, 4-6/4-5 in graeca) appear to be the most suted and easy to handle external character It may fall in very young specimens (TL $<20.0 \mathrm{~mm}$) and in advanced specimens with already reduced number of tooth rows, and then may lead to confusion, especially with R. temporaria.

In the samples studied, the following three buccopharyngeal characters of graeca and italica (stages 36-38) showed distinct differences compared to the other European brown frog tadpoles for which these characters were already described:

- In ranine frogs, two or four lingual papillae occur, the latter type being most common (Hammerman, 1964; Viertel, 1982; Inger, 1985). According to Viertel (1982), the number of lingual papillae is useful to separate European brown frogs (subgenus Rana (Rana) sensu Dubols, 1992) from European green frogs (subgenus Rana (Pelophylax) sensu Dubots, 1992), the former developing four, the latter two lingual papillac. Yet, graeca and ualica tadpoles have two papillae, which contradicts the above classification.
- Comparing the total counts of velar marginal projections, Viertel (1982) gives them as 5-6 in European brown frogs and about 10 in European green frogs; graeca and italica with a number of 10 match the latter. This cancels the character for group clustenng but separates graeca and italica from the other brown frogs.
- In graeca and italica, the longitudinal axis of the internal nares is almost in a right angle to the main body axis; this is different from all other European Rana species where the choanae form an anteriorly opened, obtusely angled "V" (VIERTEL, 1982).

All the characters mentioned above support the proposal of Dubors (1992) to recognize, within the subgenus Rana (Rana) s. str., a distinct species group (Rana graeca group) for graeca and italica.

The status of gragea and italica
Larvae from Italy and Greece could not be distinguished unequivocally from each other on the basis of their buccopharyngeal morphology. However, graeca has a significant tendency to have more tooth rows in the anterior lip than italica, especially in oider stages. Besides, there are slight but significant differences between them in a variety of external morphometric features (SV(TL)/stage; ratios VT/HT, UF/LF, VT/SV, SV/SU, RN/NP, PP/OD, NN/OD; numbers of MP and IMP). Depending on developmental stage these differences are of variable diagnostic sıgnificance. "Coefficients of difference" (GÉRY, 1962; Mayr, 1975) were calculated for every metric character in all size classes. Out of 70 coefficients, 66 (t.e. 94%) were low (between 0.0 and 0.71), indicating that thereby less than 70% of the individuals can be assigned correctly to one of the groups, Italy or Greece. Only four coefficients (Table IV) came close to or even surpassed the usual conventional degree (1.28) of subspecific divergence, suggesting that, with their belp, $85-92 \%$ of the individuals can be assigned to the right group. The more the tadpoles develop, the more evident become the differences between Italian and Greek larvae. The mean coefficient of difference of all 14 proportions increases from 0.22 (TL $250-29.99 \mathrm{~mm}$) to 0.49 (TL $45.0-49.99 \mathrm{~mm}$).

Discriminant analyses executed for 6 size classes revealed two isolated clusters (Italy and Greece), to which $87-100 \%$ of the individuals were assigned properly (fig. 10).

This study therefore demonstrates the existence of a significant morphological dissimilarity between the tadpoles of Italy and Greece. Addition of this third piece of

Fig. 10 - Sux size classes (A. 20 0-24 99 mm , B. $250-29.99 \mathrm{~mm}$; C: $30.0-34.99 \mathrm{~mm}$; D: $35.0-39.99 \mathrm{~mm}$, E: $40.0-44.99 \mathrm{~mm}$, F. $45.0-$ 49.99 mm) of 212 graeca (G) and italica (I) tadpoles clustered by discriminant analysis with stepwise varable selection. The percentage of proper assignement is indicated at the nght end of the abscissa. Vertical bars (1) at the bottom symbolize class centroids The ordmate represents the frequency (number of indwiduals), the abscissa shows canonical discriminant function scores.

Table IV. Ratios and size classes where coefficients of difference between graeca and italica are close to the usual conventional level of subspecific separation (1.28). For abbreviations see Table II.

Ratio	Size class	Coefficient of difference
$\mathrm{VT} / \mathrm{HT}$	$40.00-44.99 \mathrm{~mm}$	1.40
$\mathrm{VT/HT}$	$45.00-49.99 \mathrm{~mm}$	1.03
$\mathrm{PP} / \mathrm{OD}$	$45.00-49.99 \mathrm{~mm}$	128
$\mathrm{NN} / \mathrm{OD}$	$45.00-49.99 \mathrm{~mm}$	1.08

evidence to the first two already available (adult morphology: Dubors, 1987; allozymes: Picariello et al., 1990; Capula, 1991; Gollmann, 1992), confirms that both forms should be treated as dfferent taxons Should they be considered subspecies or species? Since these forms are fully allopatric, not connected by a contact zone, this question is difficult to answer (see e.g. the detailed discussion in Dubois, 1977), and at this stage of research we prefer to keep this question open. We disagree with several current authors regarding the taxonomic weight and meaning of "molecular distances" (see Dusors, 1988b: 50, for a criticism of the use of the name "genetic distance" for such indices): these distances can be based on the results of electrophoreses (e.g. Nei's or Rogers" distances), on immunological comparisons, or on nucleic acids hybridizations or direct comparison of their sequences. Contrary to what is believed by some current workers, including batrachologists (Cei, 1971; Crespo, 1972; LaNZA et al., 1975, 1976, 1982, 1984; Busack et al., 1985; Capula et al., 1985; Busack, 1986; etc.), a high "molecular distance" between two allopatric populations or groups of populations is not by atself sufficient evidence that they belong to distinct species: it can just be one plece of evidence among others, with no more weight than evidence from morphology, mating call, chromosomes, etc. As analysed in detail by Pasteur \& Pasteur (1980) and Pasteur (1985), there exists no such thing as a "specific level" of molecular differentiation' for example, two different good species may be separated by a "molecular distance" much weaker than that between populations of another species. Therefore, proper resolution of the status of graeca and italica will require additional work, dealing with other characters (e. g. hybridization, eco-ethology, mating calls, nucleic acids, chromosomes, etc.).

Résumé

La morphologie externe et l'anatomie buccopharyngée des têtards de Renat [graeca] grauca et Rana /graleca] italıca sont décrites en détal. Ces caractères traduisent une bonne adaptation de ces têtards à la vie en eau courante. Les particularités buccales les plus
notables sont le nombre élevé de rangées de kératodontes, le nombre élevé de papilles sur le plancher et le plafond buccal, et les grands palpes prélnguaux à lobes allongés.

Les têtards provenant d'Italie ressemblent beaucoup à ceux de Grèce. Toutefois, les deux groupes s'avèrent diffërer légèrement mais de manère signticative l'un de l'autre pour un certain nombre de caractères. Ces résultats confirment l'existence de deux taxons distincts, sous-espèces ou espèces, graeca pour les populations des Balkans et italtca pour celles des Apennins.

Acknowledgements

We are indebted to R. WYTEK (Vienna), who essentially contributed to the statistical analysis. Furthermore, we wish to acknowledge C BENYR (Vienna) who carefully carred out the measurements, H C. Grillitsch (Vienna) for preparng the total views and the oral disk aspect of the tadpole, A. Ohler (Paris) for her precious help in the field and in the laboratory, and R. Bour for his careful preparation of the tables of thas paper for publication. The investigations were supported by the "Fonds zur Forderung der wissenschaftlichen Forschung", project No P6353B

Literature cited

Altig, R \& Johnston, G. F, 1989 - Guilds of anutan larvae, relationshups among developmental modes, morphologies, and habutats. Herpet. Monogr, 3 81-109
ARNold, E N. \& Burton, J. A , 1978, - A field gude to the repttes and amphibians of Brytain and Europe. London, Collins: 1-270, pl. 1-40.
Bagnols, C., 1985. - Anfibi e rettri della provincia di Roma. Roma, Assessorato Santà e Ambente \& WWF Laz10: 1-82.
Beskov, V., 1970. Biologic und Verbreitung des Griechuschen Frosches (Rama grapear Blgr.) in Bulgarien Il Untersuchungen über die Fortpflanzung und die Larven Bull Inst Zool. Mus., 32: $159-180$.
Boulenger, G A., 1891a - Description of a new European frog. Ann. Mag. nat. Hist, 8: 346-353
----- 1891b. - A synopsis of the tadpoles of the European batrachans. Proc. zoof. Soc Lond, 1891: 593-627
----- 1897-1898. - The tailless batrachians of Europe Vols $1 \& 2$ London, Ray Society 1-376.
BUSACK, S D, 1986 - Taxonomic implications of biochernucal and morphological differentiation in Spanish and Moroccan populations of three-toed skinks, Chaicides chakides (Lacerthia, Scincidae). Herpetologica, 42: 230-236.
Busack, S. D., Maxson, L. R \& Wilson, M. A. 1985. - Pelohates varalda (Anura: Pelobatidae) a morphologically conservative species Copeta, 1985 107-112.
Capula, M., 1991. - Allozyme vartation in Rana lataster populations (Amphibia Ramidae) from northern Italy and Istra (NW Jugoslavia) biogeographic inferences from electrophoretic duta Zool. Anz., 227 (1/2): 1-12.
Capula, M, Naschtti, G., lanza, B., Bullini, L. \& Crespo, E. G., 1985. Morphologlcal and genetic differentation between the Iberian and the other west Medtertanean Discoglossus species (Amphibia Sabientia Discoglossidac) Mont zool tad., (n s), 19 69-90.
Cet, J M, 1971. - Analsss sero-mmunologico de diferentes nuveles de especiación en Bufo del grupo spinulesus. Acta zool, hlloana, 28; 91-105.
Crespo, E. G, 1972 Sur la position taxonomıque des Hyldés du Portugal (Amphbia, Salientia). Analyse sérologıque et caractères métroques. Arqu. Mus. Bocage, (2), 3: 613-632.

Delaugerre, M. \& Dubois, A., 1985 - La vanation géographique et la vanabilité intrapopulatonnelle chez Phyllodactyfus europaeus (Repuha, Saura, Gekkonidae), Bull. Mus, natn. Hist. nat , (4), 7 (A): 709-736.
Dubois, A., 1977, - Les problèmes de l'espèce chez les amphbiens anoures. Mém. Soc zool. France, 39: 161-284.
---. 1987 Notes sur les grenouilles brunes (groupe de Rana semporaria Linné, 1758) IV. Note prélıminare sur Rana graeca Boulenger, 1891, Alytes, 4 (4): 135-138.
----- 1988a. - Dates de publications du journal Alytes (1982-1987). Alytes, 6: 116.
----- 1988b. - The genus in zoology: a contrbution to the theory of evolutionary systematics. Mem Mus, natn. Hest. nat., (A), 140: 1-123.
----- 1992. Notes sur la classification des Ranidae (Amphibiens Anoures). Bull Soc. Imm Lyon, 61 (10): 305-352.

Dufllman, W E, 1993 Amphibian species of the world additons and corrections. Univ. Kansas Mus. nat. Hust. special Puhl, $21[i-i i]+1-i i i+1-372$
Gery, J. 1962. - Le problème de la sous-espicee et de sa définition statistıque (à propos du coefficient de Mayr-Linsley-Usınger). Vie Milieu, 13. 521-541.
Gollmann, G. 1992. Unusual allelic frequencies in South European brown frogs. AmphebaReptilia, 13 (1): 81-82.
Gosner, K L, 1960 - A sumpltied table for staging anuran embryos and larvae with notes on their ident,fication. Herpetologica, 16: 183-190,
Gradwell, N, 1972. - Comments on gill irrigation in Rana fuscugula. Herpetologica, 28: 122-125.
Grillifsch, B. \& Grilutsch. H., 1989. - Teratological and ontogenetic alterations to external oral structures in some anuran larvae. (Amphbia: Anura: Bufondae, Rarudac). In H Splechtna \& H. Hilgers (eds), Trends in vertebrate morphology, Proc 2 nd [nt Symp. Vertebrate Morphology, Vienna, 1986, Fortschritte der Zoologie - Progress in Zoology, 35: 276-281.
Grillitsch, B, Grillitsch, H. \& Splechtna, H., 1989 - The tadpole of Bufo brongersmat Hoogmoed, 1972. Amphibsa-Repilita, 10: 215-229.
Grillitsch, H, 1984. - Zur Eddonome und Differentualdagnase der Larven pon Rana arvalis wolterstorffi, R. dalmatina und R. L. temporaria im Veviaufe threv Entweklung von der Schlupfreffe bes zum Einsetzen der Schwanzreduktion. Ph. D. Thesis, University of Vienna
Günther, R., 1985. - Ordnung Anura, Froschlurche. In: W.-E. Engelmann, J. Fritzsche, R. GÜnther \& F. J Obst, Lurche und Krtechtiere Europas, Leipzig \& Radebeul, Neumann: 113-184
Hammerman, D L.. 1964 Occurrence of premetamorphic papillae in ranid tadpoles. Amer. Zool., 4. 319.

Inger, R F., 1985 Tadpoles of the forested regrons of Borneo. Fueldiana Zool., (NS), 26: 1-89.
LANZA, B., 1983. Gude per at riconoscmento delle speci animali detle acque interne tahane 27 Anfib, Reinh (Amphbia, Repahia) Verona, Consigho Nazionale delle Ricerche: 1-196.
Lanza, B., Cei, J. M. \& Crespo, E, 1975. Immunological evidence for the specific status of Discoglossus puctus Otth, 1837 and D. sardus Tschuid, 1837, with notes on the famblies Discoglossidae Günther, 1858 and Bombinidae Fitzınger, 1826 (Amphibia Salientia). Monut. zool. tal., (n. s), 9: 153-162.
Lanza, B., Cfi, J. M \& Crespo, E, 1976 - Further immunological evidence for the validity of the fambly Bombundae (Amphbua Salientag). Mont. zool. ital., (n. s.), 10: 311-314.
Lanza, B, Nascetti, G \& Builini, L, 1982 - Tassonoma biochmica del genera Hydromantes (Amphrbia, Plethodontidae). Boll. Zool., 49 (suppl)' 103
Lanya, B., Nascftti, G., Capula, M. \& Bullini, L., 1984. - Genetic relationships among west Medsterranean Discoglossus with the description of a new spectes (Amphibua Salientia Discoglossidae). Monit. zool. ital., (n. s), 18 133-152
Mark, E., 1975. - Grundlagen der zoologivehen Systematak. Hamburg \& Berlin, P. Parey: 1-370
Nollert, A. \& NOllfrt. C. 1992 - Dte Amphthen Europas Stuttgart. Franckh-Kosmos: 1-382.
Pastevr, G., 1985 - Les paramètres slatıstrques commumément utilsés dans l'exploitatıon des résultats de l'électrophorèse des proténes et leur avenir en systémaluque. Mém. Soc. zool. France, 42: 141-180.
Pasteur, G. \& Pasteur, N, 1980. Les critères biochimiques et l’espèce animale. Mém Sor zool. France, 40 99-150

Ptcartello, O, Scillitani, G. \& Cretella, M, 1990 - Electrophoretic data supporting the specific rank of the frog Rana graeca italuca Duboıs, 1985. Amphitua-Repuha, 11• 189-192
Picariello, O., Scillttani, G.. Fritz, U, Gcinther, R \& Mutschmann, F., 1993 - Zur Herpetofauna Suditaliens. Tell 2. Die Amphbien und Reptilen des Picentini-Gebirges (Apennm, Kampanien) I. Allgemeines und Amphsben. Herpetofouma, 15 (85): 19-26.
Serra-Cobo, J., 1993. Descripción de una nueva especie europea de rana parda (Amphbia, Anura, Randae). Alytes, 11 (1): 1-15.
Viertel, B, 1982. - The oral cavities of Central European anuran larvae (Amphibia). Morphology, ontogenesis and generic diagnosis. Amphibia-Reptilia, 4: 327-360.
---- 1984, - Habit, melamin pigmentation, oral disc, oral cavity and filter apparatus of the larvae of Baleaphryne muletensis In H. Hemmer \& A. Alcover (eds), Historia biologica del ferreret (Life history of the Mallorcan mudwife toad), Mallorca, Moll: 1-268.
Wassersug, R., 1976. - Oral morphology of anuran larvac: terminology and gencral description. Occ. Pap. Mus. nat. Hiss. Univ. Kansas, 48 1-23.
--- 1980. - Internal oral features of larvae from eight anuran families: functional, systematac, evolutionary and ecological considerations. Unv, Kansas Mus, nat. Hist, misc. Publ, 68. 1-146.

Correspondeng edtor: Gūnter Gollmann.

[^0]: 1. Several authots (PiCARHLLA et al, 1990; Capula, 1991; DuELiman, 1993) credit the name itafica to "Dubors (1985)", although the paper where this name first appeared was published on 26 January 1987 (Dumons, 1988a), and should therefore be quoted as "Dumoss (1987)".
